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ABSTRACT 

This lecture gives an inside look into the proof of the continuity of pseudo- 
differential operators of order m and type p, ~I, ~2 for 0 _~ 17 ~ 1 ~ 1 ,  
0 _< p _< fi2 < 1, and m/n < p <= (61 +~2)/2. Applications are mentioned. 

Recently Calder6n and Vaillancourt [2] established the following result: 

Pseudo-differential operators of order m and type p, 61, 62 are bounded in L2(R ") 

provided that 0 < p < 6j < 1, and m/n <= p - (61  + 62)/2. In fact it is enough 

to require that the symbol p(xl, x2, 4) of the operator 

(Pu)(xl) = (2n)-" f f e'(X'-x2)" ¢p(xDx2,Qu(x2)dx2d~ 

satisfy the inequalities 

I axAp(x .x .O[  =< c(1 + l l) , j = 1 , 2 ,  

fo r0<[131  <2En /2 ]+2 ,  and 0 <  [~[ < 2 m j ,  where rnj is the least integer 

such that 

m j(1 - 6j) > 5 n/4. 

In 1971, H6rmander [5] established that if p > 0, m/n < p - (61 + 62)/2, 

and p has compact support in (xl ,x2)then the pseudo-differential operator 

with symbol p is bounded in L z. He also proved that this need not be true if 

m/n > p -(61 + 62)/2. The result also fails if 61 = 62 = p = 1 and m = 0, 

as was shown by Chin-Hung Ching E3]. Thus [2] settles the borderline case and 

removes the restriction on the support of p. 

In this paper I intend to give some intuitive reasons why the proof of  [2] 

works. I feel that this is interesting and might be useful for further research. 

The proof of the theorem rests on an "almost  orthogonal" splitting of  the 
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operator P to which one applies a generalization of  a lemma originally due to 

Cotlar (see [6]). I state this auxiliary lemma as given in [2]. 

Let A denote a bounded operator on a separable Hilbert space H and let A(z) 
be a weakly measurable, uniformly bounded, operator-valued function on a 

measure space Z with measure dz. I f  

and 

[]A*(zOA(z:)][ ~ hl(zl,z2) 2 

11A(zl)A*<z2) II z hz(za, z2) 2 

f hl(zx, z)hz(z, z2)dz 

is the kernel of  a bounded operator on LZ(z) with norm N z, then 

f A(z)dz II --- N, lit 
where E is any subset of  finite measure or Z. 

To prove the lemma one shows that, for any set E of  finite measure, 

lim (z)dz A(z)dz < N 2, 
n ~ o o  L \,,I E I 

and hence 

IIAII 2 = I l aa*[ ]  = I~(AA*)[  = lim [I(AA*)"][ v"  =< u 2 
n --~ oo 

The insight I want to give will be achieved by replacing the continuous par- 

tition of  P used in the proof  of  [-1] and [2] by a discrete partition. 

Let  us consider a simple symbol of  class S O that is, a bounded function 0 , 0 ,  

p(x, ~) with bounded derivatives, and, for simplicity, we restrict ourselves to the 

one-dimensional case, n = 1. 

Let q(~) be a smooth function with bounded support, 

Set 

and with 

q(~) 
> 0 for [4[ < 2/3 

= 0 for I~1 > 3/4. 

q.(~) = q(~ -- n) 

w.(~) = q.(~)/[ ]~ q.(~)], 
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define 

Then 

and  

P S E U D O - D I F F E R E N T I A L  O P E R A T O R S  

p.(x,  4) = w.(~)p(x, ~). 

p =  Z p .  

p.pm = O, ] n -- m ] > 1. 

First, the P.  are uniformly bounded, 

11P.II z c, 
since p,(x, 4) ~ C z in ~ and has support  in ~ of  uniform length for all n. 

Second 

P2nP~m = O, m ¢ n, 

since 

Hence 

p2,,(x, ~)P2m(X, ~) = 0 for rn ~ n. 

Third, for n ~ m, 

(v, P*.P2mu) 

= (2re) -2 f "'" f ~ (z)e-'(~-~)~a.(x, Oei(~-')¢ pE,.(x,{)u(y)dyd{dxd{dz 

ffg(z)az, u ( y ) d Y e i ( : , _ r ) ~ l  = (2rr)-2 "'" 1 + (x - z) 2 e-'(x-z)~ 1 + (x - y)Z 

(1 --  0~) (1 - -  0~)0x 3 [p2n(X, ¢)p2,n(X, ¢)]dCdCdx. 

1 I(~.e*oP~.)l_-<cIJ.II.fl~ll,  - 
I I  I I  I I  I I  i 

II - -  r~l 

Now by the lemma,  

and similarly, 

but  this implies 

II zP,oIt -< ~, 

II ~ e2o+, II s c; 

II e II z 5I z e~o I[ + II z e2,.+, II =<c < oo 
This establishes the theorem when p = 6 = 0. 

[ i ( (  _ { ) ]a  
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The above unpublished proof, due to Ching, requires only two derivatives in C, 

while three in x. 

When p = 6 ~ 0, this proof requires some modifications since 

] O:,p2.(x, ~)p2.,(x, C) I 

need not be bounded. 

We first note that the pseudo-differential operators P and Q associated respec- 

tively with the symbols p(x, C) and p(a-ix, aO, a > O, have equal norm: 

II P IJ = ]1 e IJ- 
Thus for p,(x, 4) with C-support around n, we choose a such that 

be of class SO. o , namely, 

p.(Inl-~x, Inl~0 

= 6 / (1  - 6).  

Next we determine the proper size of the support of p.. To do so we use the 

function q(O introduced above to define 

qo(C) = q(C), 

q,(:) = q ( . - ~ - - ~ n ] ~ )  ]n I > 1, 
\ ( ~ +  a)ln I ] ' = 

and, as before 
w,(0  = q,(¢) / [ Yq,(O],  

Pn( x, C) = Wn(~)P(X, C). 

Now one sees that p.(]n ]-~x, [ n I°~) is C 2 in ~ and has C-support of  uniform 

length for all n; thus 

I1 P.II ~ c, all n .  

Next, for I.I, Iml ~ M(tr), 

II P~.P~o II = 0, . ~ m. 

Finally, for [n [, [m [ > M(a), one shows that 
¢ 

It P*.P2m I[ < 

by considering the norm-equivalent symbol 

e > O ,  
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p2.@-" X,d'Op2m(~-%~'O, 

where 

= m i n ( 1 2 n l , 1 2 m [ ) .  

The same holds for odd indices. Thus, by the lemma, 

IIPII --< z llPm II + II z P:.II + II z e: .+,  II < ~o .  
Iml ~M 12ml>M 12m+l I>M 

We turn now to the proof of the theorem as given in l-l] and [2]. In [1], 

p = 6 = 0 and the following continuous splitting ofp(x,  4) was used: 

4) = f f q(x -- s)q(~ - t)g(s,t)dsdt, p(x, 
3 3  

where 

and 

Thus 

g(x, 4) = (1 + 0D3(1 + O~)3p(x,~), 

q(x) = (½0 x2e-x 
for x >  0 

for x < O. 

(x) = ~ 1" dsdtg(s, t)(P(s, t)f)(x) (P f )  
LI 

where 

,f (P(s, t)f)(x) = ~ ei~¢q(x - s)q(~ - t)f(~)d~. 

Since the function g(s, t) is bounded, one need only prove that  
g, 

il < c Ilsti 
by means of the lemma. 

For the case 6 > 0, the function g(s, t) need not be bounded. Therefore in [2] 

a more involved splitting of P had to be used, namely, 

(Pf)(xl)  = (2n)-" f g(xl, x2, ~)e~( ~, 7(x~)axd¢ 

= (2=)-" ( P({)S(xl)d { 
! 

where 



230 

and 

g(xl,x~,O 
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[1 + ( - Ae)N[1 + 1 4 [2]N"]{p(xl, x2, 4)" 

[1 +[1 + I ¢1=-]-  - 

N = [ n / 2 ]  + 1. 

The lemma is now applied to P(4). 

We remark that this last splitting of P holds for any dimension n. In the case 

of the discrete splitting of P, one can partition R" into 2" disjoint sets of  cubes 

and apply the argument to each set. 

In concluding, I would like to mention an important application of the theorem 

treated in this paper. Beals and Fefferman, at the University of  Chicago, have 

extended the sufficient condition of Nirenberg and Treves [9] for the local sol- 

vability of differential operators of  principal type with analytic leading coefficients 

to the case of infinitely smooth coefficients. In the proof  they need the fact that 

a pseudo-differential operator of  order 0 and type 1/2 ,  1/2 be bounded. 

I would finally remark that,  using the method of  proof outlined in this paper 

one can show that an operator of  order 0 and of  type p and 6, 1 > p > 6 > 0 is 

bounded provided its symbol p(x,  4) satisfies the inequalities 

[0~:ffp(x,4)] < c(X + 14[) ~j<-°jal 

for 0 < ]fl] < const, n and 0 < 1~1 < const, n / ( 1 - 6 ) .  This contrasts with 

previous proofs [4, 7 and 8] where the number of  derivatives grew as n/(p - 6). 

In case p = 61 = 62, one can show, by using the methods of [2] and [8] 

that the operators of order zero form an algebra. 
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