BOUNDED PSEUDO-DIFFERENTIAL OPERATORS

BY
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ABSTRACT

This lecture gives an inside look into the proof of the continuity of pseudo-
differential operators of order m and type p, 61,d8; for 0 < p < é1=1,
0 p S8, <1, and min < p < (6;+2)/2. Applications are mentioned.

Recently Calderén and Vaillancourt [2] established the following result:
Pseudo-differential operators of order m and type p, §,, §, are bounded in I*(R")
provided that 0 < p < J; <1, and m/n £ p — (6, + 9,)/2. In fact it is enough
to require that the symbol p(x,,x,,&) of the operator

(Pu)(xy) = 2m)™" f f ¢TI o (xy, %5, E) u (%) dxy dE
satisfy the inequalities
| 0%,0500x 1, %2, §)| S (L + [y oM=L, j=1,2,
for0 < IB[ <2[n/2] +2, and 0 = Irxl < 2my, where m; is the least integer
such that
myl —4,) = 5 nf4.

In 1971, Hérmander [5] established that if p > 0, m/n < p — (8, + 6,)/2,
and p has compact support in (x,,x,) then the pseudo-differential operator
with symbol p is bounded in I2. He also proved that this need not be true if
min> p —(3, + 8,)/2. The result also fails if 6, =06, =p =1 and m =0,
as was shown by Chin-Hung Ching [3]. Thus [2] settles the borderline case and
removes the restriction on the support of p.

In this paper I intend to give some intuitive reasons why the proof of [2]
works. I feel that this is interesting and might be useful for further research.

The proof of the theorem rests on an ‘‘almost orthogonal’ splitting of the
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operator P to which one applies a generalization of a lemma originally due to
Cotlar (see [6]). I state this auxiliary lemma as given in [2].

Let A denote a bounded operator on a separable Hilbert space H and let A(z)
be a weakly measurable, uniformly bounded, operator-valued function on a
measure space Z with measure dz. If

“ A*(z1)A(z,) “ = h1(z1’22)2
” A(z4)A%(z,) ” < hy(zy4,2,)°

and
|ICADINCERTE
is the kernel of a bounded operator on I[*(Z) with norm N2, then

I f Az | =N,

where E is any subset of finite measure of Z.

To prove the lemma one shows that, for any set E of finite measure,

tim | [(Jae) ([ a0) ]

”A”Z _ ||AA* ” = |0'(AA*)l = ,,1_1,12 ” (AA*)"”I/n < N2,

1/n
< N?,

and hence

The insight I want to give will be achieved by replacing the continuous par-
tition of P used in the proof of [1] and [2] by a discrete partition.

Let us consider a simple symbol of class S(‘,’,O, that is, a bounded function
p(x, &) with bounded derivatives, and, for simplicity, we restrict ourselves to the
one-dimensional case, n = 1.

Let (&) be a smooth function with bounded support,

>0 for [¢] £2/3
q(%)
=0 for [¢] > 3/4.

Set
4.(8) = q({ —n)

and with

w.(&) = 4, O/ X q,(0)],
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define
Pa(x, &) = wy(O)p(x, 5).
Then
p= Xp,
and

PuPm =0, |n—m'>1.

First, the P, are uniformly bounded,

since p,(x,&) € C* in ¢ and has support in ¢ of uniform length for all .
Second

PZnP;‘m:O, m#"a

since
p2n(x’ g)pZm(xs é) =0 for m # n.

Third, for n # m,
(v, P3P omtt)

= m™? J fv @)e T (0,0 T pyy(x, E)u(y)dydidxdldz

= e j J Ty ™™ e re=ar
(1= 9 (1 = 033 [P2n(x%, OP2m(x, )]dCdLdx.
Hence .
. P2Pa] 3 el o] o
Now by the lemma,
| 2P < e
and similarly,
| ZPosi] < ¢
but this implies
[Pl < ZPon] + | ZPopss| S e <.
This establishes the theorem when p = 6 = 0.
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The above unpublished proof, due to Ching, requires only two derivatives in &,
while three in x.
When p = § # 0, this proof requires some modifications since

02D 20(, P 2m(%, )|

need not be bounded.
We first note that the pseudo-differential operators P and Q associated respec-
tively with the symbols p(x,¢) and p(a—'x,af), a > 0, have equal norm:

[Pl =]el

Thus for p,(x,¢&) with é-support around n, we choose ¢ such that

pa(|n| %%, |n]%®)
be of class Sg o, namely,
c=46/(1-9).
Next we determine the proper size of the support of p,. To do so we use the
function g(&) introduced above to define

90(8) = 4(®),

_ (&—n|n]
q.8) = Q(m) , In| 21,

and, as before

wa(8) = 3,8 [T Zq.(D)],
Pu(x,8) = wa(&)p(x, ).
Now one sees that p,,(I n I"’x, Inl"é) is C? in ¢ and has &-support of uniform
length for all n; thus
” P,," <S¢, all n.

Next, for lnl, lml 2 M(o),

| P,P3 ]| =0, n#m.
Finally, for lnl, Im[ > M(o), one shows that

[4

%
| P3.P2m| < W’

£>0,

by considering the norm-equivalent symbol
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Do X, 1P am(p ™ x, 1 %),
where
p = min(|2n],|2m]).
The same holds for odd indices. Thus, by the lemma,

[Pl 2 |Pu]+] Z Puf+] I P <eo.
|m| S M 12m}>M |

2m+1|>M

We turn now to the proof of the theorem as given in [1] and [2]. In [1],
p = & = 0 and the following continuous splitting of p(x, &) was used:

p(5,8) = f f 4G — $)a(z — Dg(s, Ddsdt,

where
g(xsi) = (1 + ax)3(1 + a&)sp('xaf) H
and '
Ix%™* for x= 0
g(x) =
0 for x < 0.
Thus
PHE =j dsdig(s, (PG DN)
where

P01 = 50 [ €=fat = ace - 0.

Since the function g(s,t) is bounded, one need only prove that

.
| Pes.0sdsdt | < | £}
by means of the lemma. ’
For the case 6 > 0, the function g(s,t) need not be bounded. Therefore in [2]
a more involved splitting of P had to be used, namely,

PHEx) = @y f g1, X2, O () e,

- @y f PO S (x1)de

where
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g(x1x5,8) = [1+(~— Aé)N[l + Iélz]NP]{P(xpxz,f) :

L+ [+ |612]Np|x1 —le ZN]—I}’

and
N =[n/2] + 1.

The lemma is now applied to P(&).

We remark that this last splitting of P holds for any dimension n. In the case
of the discrete splitting of P, one can partition R* into 2" disjoint sets of cubes
and apply the argument to each set.

In concluding, I would like to mention an important application of the theorem
treated in this paper. Beals and Fefferman, at the University of Chicago, have
extended the sufficient condition of Nirenberg and Treves [9] for the local sol-
vability of differential operators of principal type with analytic leading coefficients
to the case of infinitely smooth coefficients. In the proof they need the fact that
a pseudo-differential operator of order 0 and type 1/2 , 1/2 be bounded.

I would finally remark that, using the method of proof outlined in this paper
one can show that an operator of order 0 and of type pand 5,12 p > 5 =2 01is
bounded provided its symbol p(x, &) satisfies the inequalities

|0208p(x, )| < e(1 + [&])%1el=0lel

for 0 2 ]/3] < const. n and 0 < ]oc] < const. nf(1—48). This contrasts with
previous proofs [4, 7 and 8] where the number of derivatives grew as n/(p — §).

In case p = J§, = J,, one can show, by using the methods of [2] and [8]
that the operators of order zero form an algebra.
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